What is the role of certifications in the discussion on the environmental performance of the glass box building? Present in the Brazilian building sector for more than two decades, it can be said that the systems for assessing the environmental and energy performance of buildings, in the form of the well-known “green certifications”, aroused the interest of market agents for aspects of environmental performance and energy in general, as they bring benefits in the form of a marketing strategy for certified enterprises, with great strength in the case of office buildings. However, researchers on the subject state that the focus and methodological approach of these systems, in particular Leed, has been masking an energy demand and an environmental quality below what could and should be achieved in several parts of the world, including Brazil. But why does this happen?
Looking at the big picture, the certification systems originated abroad and of greater use in Brazil are: Leadership in Energy and Environmental Design – Leed, of the US association Green Building Council – USGBC (1); High Environmental Quality – Aqua (2) and Building Research Establishment Environmental Assessment Method – Breeeam (3), Leed being the most popular of these all. Since 2007, the Leed seal has been gaining wide space in the Brazilian market, under the coordination of the organization Green Building Council Brazil – GBCB (4).
In a simplified way, the building certification systems are based on criteria allocated in a set of categories, to which minimum and maximum values are associated to be added in a final score, which determines the classification achieved on the certification rank. Some of the categories require prerequisites to achieve a minimum score. According to each certification, both the certification process itself as well as its criteria, categories and punctuation vary.
As it is understood in the definition of the IEA, "green buildings are those with greater energy efficiency, but at the same time with reductions in water consumption, use of materials with less impact on the environment and on the health of its occupants" (5). In this line, all certifications include environmental issues in addition to the energy scope.
The critical look at the Leed System criteria taken by Anarrita Buoro, Alberto Hernandez Neto and Joana Carla Soares Gonçalves (6), with regard to the energy consumption of the building in use and operation, in particular, shows that this certification, for example, is much more focused on the performance of the buildings’ systems than in architectural design features, such as form, solar orientation, layout of internal spaces, external treatment of façades and even the design of operable window frames (creating possibilities for selective natural ventilation). In this case, the dependence on the air conditioning system for 100% of the occupation time is unquestionable, in any climatic and microclimatic (climate in the location of the building) context.
The fact is that the core of the problem regarding the energy demand of these buildings has not been altered, as it continues with the same building pattern, in other words, the same architectural and economic formula of the building sector is perpetuated, so to speak. These are the design patterns expressed by the well-known deep-plan and the hermetically sealed glass enclosure and without external solar protection of any kind. In other words, we continue with the building with the glass facade unprotected from the sun, the windows that do not open for natural ventilation (not even at night, despite the advantages of the local climate), the false ceiling that isolates the thermal mass of the structure, of the deep floor plan that prevents access to daylight and natural ventilation, from the maximum floor area to the minimum facade area and other aspects that are detrimental to the energy performance of the building and to the environmental comfort of its occupants, as described in the previous texts of this series.
Looking at the reality and the concepts of physics applied to the thermal and daylight performance of buildings, how can a building with deep-plan floors and glass enclosure (whatever the type of glass), without any type of external sun protection, located in a city of latitude 23o32' South (next to the Tropic of Capricorn) and hot climate, like Sao Paulo, consequently an accumulator of solar heat and devoid of natural light (since the glare caused by the glass facades is such that internal curtains have to operate lowered by much of the time) be certified as a building with good or excellent environmental and energy performance? For this is the standard building model well qualified by this certification, at least, around the world, regardless of their climate context. As mentioned before, the certification includes the specifications and performance of equipment and some other design and construction parameters, in particular the type of glass, but without any considerations to external shading.
As a result of that approach, not surprisingly, there are examples of buildings qualified by the Leed certification, in different parts of the world, consuming more energy in their use and operation routines than other non-certified buildings. Alec Applebaum (7) published that a Leed certified building in North Carolina consumed more than twice as many of its neighbours, which were built previously, without the purpose of achieving any certification. With respect to the factors of architectural design and environmental quality that hold great potential for the real reduction of energy demand in office buildings, in the latest version of the Leed system (still the most used certification system in Brazil and worldwide), for example, the use of daylighting is better contemplated, but there is still a lack of a clear position on the advantages of the possibilities of inserting natural ventilation both for the removal of internal heat and for the thermal comfort of the occupants itself.
And what does the Brazilian Labelling Program – PBE Edifica propose (8), our entirely national certification, on the environmental and energy performance of commercial buildings for Brazilian cities? Analysing its premises, it appears that, by the simulation method of assessing the energy performance (made in the design stage), the prerequisites of the envelope (the facades), factors such as the percentage of glazed area and thermal transmittance, among others , are no longer mandatory, as long as the total energy consumption is less than that of the reference building, which does not include the contribution of external shading, for example, nor the contribution of daylight in the reduction of the internal thermal load and the demand for electrical energy associated with artificial lighting systems. So, one should ask: How energy efficient is the reference building?
In a nutshell, the national certification alternative ends up facilitating the reproduction of buildings with low environmental energy performance in their envelope, a performance to be compensated by more efficient systems, both for lighting and air conditioning. In this way, it is often possible to check buildings classified as level “A” with façade performance below its real environmental and energy potential, in the context of hot climates and significant solar heat loads. Not to mention the problems of thermal comfort and glare linked to the design of the glass façades, as already stated in the previous texts of this series.
The design process of the office building in favour of better environmental performance, in any city in the world, can certainly be favoured by the search for an environmental performance label, as it requires evaluations of the environmental performance of the building’s project in the design phase. However, it must be considered that, in addition to the criteria of a certification such as Leed, for example, do not sufficiently emphasize architectural aspects, without proof of the real better environmental and energy performance of buildings in use and occupation, the certification is nothing more than a simple market instrument, with no real value for those who paid for it. In this line, the Leed Operation and Management – Leed OM certification was created, including parameters of operation and maintenance of the building in use, which is independent of the certification applicable to the project.
In conclusion, as stated by Joana Carla Gonçalves and Klaus Bode (9), what is important for the value of buildings in the future of climate change and scarcity of energy resources is that good design practices, those in favour of environmental quality and real energy efficiency, are part of the investment agenda of local markets for obvious reasons, whether these are included in the certifications or not and whether the buildings are certified or not.
notes
NA – A série de oito artigos intitulada “O pobre desempenho ambiental dos escritórios por trás da caixa de vidro” conta com os seguintes colaboradores: Amanda Ferreira, Aparecida Ghosn, Ana Silveira, André Sato, Bruna Luz, Carolina Leme, Claudia Carunchio, Cristiane Sato, Eduardo Lima, Erica Umakoshi, Guilherme Cunha, Julia Galves, Juliana Trigo, Karen Santos, Laís Coutinho, Mônica Marcondes-Cavaleri, Monica Uzum, Nathalia Lorenzetti, Paula Abala, Sheila Sarra, Sylvia Segovia.
NE – Este é o sétimo de uma série de oito artigos sobre o tema do “desempenho ambiental”. A série completa é a seguinte:
GONÇALVES, Joana; et. al. Desempenho ambiental dos escritórios em caixa de vidro. Uma visão geral (parte 01/08). Drops, São Paulo, ano 21, n. 158.08, Vitruvius, nov. 2020 <https://vitruvius.com.br/revistas/read/drops/21.158/7926>.
GONÇALVES, Joana; et. al. O pobre desempenho ambiental dos escritórios em caixa de vidro. Conforto térmico e desempenho energético (parte 02/08). Drops, São Paulo, ano 21, n. 160.02, Vitruvius, jan. 2021 <https://vitruvius.com.br/revistas/read/drops/21.160/7999>.
GONÇALVES, Joana; et. al. O pobre desempenho ambiental dos escritórios por trás da caixa de vidro. Controle térmico e da qualidade do ar em tempos de pandemia (parte 03/08). Drops, São Paulo, ano 21, n. 161.02, Vitruvius, fev. 2021 <https://vitruvius.com.br/revistas/read/drops/21.158/8024>.
GONÇALVES, Joana; et. al. O pobre desempenho ambiental dos escritórios em caixa de vidro. Luz natural e artificial (parte 04/08). Drops, São Paulo, ano 21, n. 162.08, Vitruvius, mar. 2021 <https://vitruvius.com.br/revistas/read/drops/21.158/8072>.
MICHALSKI, Ranny; et. al. O pobre desempenho ambiental dos escritórios por trás da caixa de vidro. Conforto acústico (parte 05/08). Drops, São Paulo, ano 21, n. 163.02, Vitruvius, abr. 2021 <https://vitruvius.com.br/revistas/read/drops/21.158/8073>.
GONÇALVES, Joana; et. al. O pobre desempenho ambiental dos escritórios por trás da caixa de vidro. A força de transformação de estratégias arquitetônicas. Drops, São Paulo, ano 21, n. 164.08, Vitruvius, maio 2021 <https://vitruvius.com.br/revistas/read/drops/21.164/8186>.
MICHALSKI, Ranny; et. al. The poor environmental performance of offices behind the glass-box. The myth of green certifications (chapter 07/08). Drops, São Paulo, year 21, n. 165.07, Vitruvius, jul. 2021 <https://vitruvius.com.br/revistas/read/drops/21.165/8199/en_US>.
GONÇALVES, Joana; et. al. The poor environmental performance of offices behind the glass-box. Future perspectives (chapter 08/08). Drops, São Paulo, year 21, n. 166.09, Vitruvius, jul. 2021 <https://vitruvius.com.br/revistas/read/drops/21.166/8202/en_US>.
1
US GREEN BUILDING COUNCIL. Why LEED – Leadership in Energy and Environmental Design. USGBC, v. 4.1, 2021 <https://bit.ly/3lD9LWl>.
2
FUNDACAO VANZONILI. Referencial Tecnico de Certificacao. Edificios do setor de servicos: Processo AQUA. Escritorios e Edificios Escolares. Sao Paulo, FCAV, 2007.
3
Building Research Establishment. How BREEAM Certification Works. BRE Ltda, 2021 <https://bit.ly/3fETGf0>.
4
TOY, Vivian S. Farm Fresh Outside the Lobby. New York Times, 19 set. 2010 <https://nyti.ms/3xAjZcv>.
5
IEA, 2008- energy Efficiency requirements in Building Codes, Energy Efficiency policies for new buildings <https://bit.ly/3AlFgZ4>.
6
BUORO, Anarrita; HERNANDEZ NETO, Alberto; GONÇALVES, Joana Carla Soares. A Certificação de Edifícios; Uma Revisão Crítica e o Caso Brasileiro. In GONÇALVES, Joana; BODE, Klaus (org.). Edifício Ambiental. São Paulo, Oficina de Textos, 2015.
7
APPLEBAUM, Alec. Can the Green Building Council Polish LEED’s Tarnished Standards? Fast Company, jun. 2011 <https://bit.ly/3iy3j11>.
8
ELETROBRAS-PROCEL. PBE Edifica – Programa Brasileiro de Etiquetagem. RTQ-C – Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Comerciais, de Serviços e Públicas, 2013 <https://bit.ly/3lO4N99>.
9
GONÇALVES, Joana Carla; BODE, Klaus. The environmental value of buildings: a proposal for performance assessment with reference to the case of the tall office building. In Innovation- the European Journal of social Science Research, vol. 24. n. 1-2, mar. / jun. 2001, p. 31-55.
About the authors
Ranny Michalski é engenheira mecânica pela UFRJ, mestre e doutora em Engenharia Mecânica pela Coppe UFRJ. Professora doutora da FAU USP, onde atua como docente no ensino e na pesquisa, e orientadora do programa de pós-graduação em Arquitetura e Urbanismo da FAU USP. Membro da Diretoria da Sociedade Brasileira de Acústica – Sobrac. Participa da elaboração de normas técnicas brasileiras em acústica da Associação Brasileira de Normas Técnicas – ABNT.
Joana Gonçalves é arquiteta e urbanista pela UFRJ, mestre em Environment and Energy pela AA School of Architecture, doutora e livre-docente pela FAU USP. Orientadora dos programas de pós-graduação Arquitetura e Urbanismo da FAU USP e Architecture and Environmental Design, School of Architecture and Cities, University of Westminster, Londres. Professora da AA School of Architecture, Londres e diretora da Associação Plea.
Roberta Mülfarth é arquiteta e urbanista pela FAU USP, mestre pelo Programa Interdisciplinar de Pós-Graduação em Energia da USP, doutora e livre-docência pela FAU USP. Orientadora de pós-graduação em Arquitetura e Urbanismo da FAU USP e no Programa de Educação Continuada – Pece, no curso de especialização de Gestão em Cidades, junto a Poli USP. Vice-coordenadora do USP Cidades. Chefe do Departamento de Tecnologia da FAU USP.
Marcelo Roméro é professor titular da FAU USP. Arquiteto e urbanista pela UBC, mestre, doutor e livre docente pela FAU USP, pós-doutorado pela Cuny (USA). Orientador e professor dos Programas de Pós-Graduação da USP, do Instituto de Pesquisas Tecnológicas do Estado de São Paulo – IPT, da Universidade de Brasília, do Centro Universitário Belas Artes de São Paulo e da Peter the Great St. Petersburg Polytechnic University.
Alessandra Shimomura é arquiteta e urbanista pela PUC Campinas, mestre pela Unicamp e doutora pela FAU USP. Professora pela Faculdade de Arquitetura e Urbanismo e orientadora do programa de pós-graduação em Arquitetura e Urbanismo da FAU USP. Advisor no Student Branch ArchTech-Labaut da Ashrae e Membro do Comitê Plea Chapter Latin America and the Caribbean (Passive and Low Energy Architecture, Plea LAC).
Eduardo Pizarro é arquiteto e urbanista, mestre e doutor pela FAU USP. Assessor de Relações Internacionais do CAU SP. Professor na USJT. Pizarro é embaixador do LafargeHolcim Awards e já desenvolveu pesquisa na Architectural Association Graduate School, em Londres, e na ETH, em Zurique. Ganhador de prêmios como o Jovem Cientista (Brasília, 2012) e o LafargeHolcim Forum Student Poster Competition (Detroit, 2016).
Monica Marcondes-Cavaleri é arquiteta e urbanista, doutora e pós-doutora pela FAU USP. Mestre pela AA Graduate School, Londres. Há 15 anos é consultora e pesquisadora em desempenho ambiental e eficiência energética da arquitetura. Especialista no uso de ferramentas avançadas de simulação computacional em avaliações dinâmicas e integradas de desempenho ambiental e eficiência energética. Auditora Aqua HQE.
Paula Lelis é arquiteta e urbanista pela FAU USP, mestre em Arquitetura, Energia e Meio Ambiente pela Universidad Politécnica de Cataluña, com doutorado em andamento pela FAU USP. Atua como consultora em sustentabilidade em projetos urbanos e arquitetônicos.
Marcelo Mello é engenheiro civil pela Politécnica – Poli USP, arquiteto e urbanista pela FAU Mackenzie, mestre em Sustainable Environmental Design pela Architectural Association School of Architecture, Londres, e doutor pela FAU USP. Trabalhou com consultoria em sustentabilidade no Centro de Tecnologia de Edificações – CTE, e hoje atua como diretor na Arqio Arquitetura e Consultoria.
João Cotta é graduado em Arquitetura pela Pontifícia Universidade Católica de Campinas, mestre em Sustainable Environmental Design pela AA School of Architecture, Londres, e doutorando pela FAU USP. Sócio do escritório Oliveira Cotta Arquitetura. Em seu portfólio destacam-se o novo centro de P&D da empresa Siemens na Ilha do fundão, no Rio de Janeiro e a Ampliação da Estação de Metrô Santo Amaro.